

Résumé of Dr. Suparna Sadhu

Designation: Assistant Professor

Contact Information

Permanent address: C/O Abhijit Samamta
Vill. Dubir Bheri, P.O. Karicha
Dist. Hooghly, PIN. 712409
West Bengal
E-mail: suparna.sadhu@gmail.com

Phone: +91 9432959204

Education

Ph.D – Indian Association for the Cultivation of Science (2011)
M.Sc. (Chemistry) - Jadavpur University (2005, **Rank 1st**)
B.Sc. (Chemistry Hons.) - Jadavpur University (2003)
Higher Secondary – W.B.C.H.S.E. (2000)
Secondary Education- W.B.B.S.E. (1998)

Professional Career

Assistant Professor (11th July 2017- till date at Sarat Centenary College, Dhaniakhali, Hooghly)
Assistant Professor (18th March 2015-10th July 2017 at Sukumar Sengupta Mahavidyalaya, Keshpur, Paschim Medinipur)
CSIR-Research Associate (April 2013-March 2015)
Research Associate (February 2011-March 2013)
CSIR-Senior Research Fellow (February 2008-December 2010)
CSIR-Junior Research Fellow (January 2006-January 2008)

Awards, Merit Certificates and Scholarship

- 1) *University Medal* for standing **1st** in order of merit at the *M.Sc.* Examination.
- 2) CSIR-NET Junior Research Fellowship in December, 2004.
- 3) Qualified GATE Examination held on February, 2005.
- 4) National Merit Scholarship for Madhyamik (Secondary), Higher Secondary and B.Sc. Examination

Research Experience

Broad area of research: Materials Science

Current Area of research:

- Computational Study of NON-linear optical properties of organic chromophores and of different nanomaterials using Density Functional Theory (DFT)
- Synthesis and photophysical properties of graphene oxide/reduced graphene oxide based hybrid nanomaterials
- Understanding the carrier relaxation dynamics in different shapes and sizes of pure, doped, hybrid and alloyed semiconductor quantum-dots.

List of Publications

Total citation > 940

h index = 19

20) Supriya Mondal, **Suparna Sudhu**, Shatabda Bhattacharya, and Shyamal K. Saha “Strain-Induced Tunable Band Gap and Morphology-Dependent Photocurrent in RGO–CdS Nanostructures” *J. Phys. Chem. C* 2015, 119, 27749–27758.

19) Dipankar Bain, Bipattaran Paramanik, **Suparna Sadhu** and Amitava Patra “A study into the role of surface capping on energy transfer in metal cluster–semiconductor nanocomposites” *Nanoscale*, 2015, 7, 20697-20708.

18) Diptiman Dinda, Abhisek Gupta, Bikash Kumar Shaw, **Suparna Sadhu** and Shyamal Kumar Saha “Highly Selective Detection of Trinitrophenol by Luminescent Functionalized Graphene Oxide through FRET mechanism” *ACS Appl. Mater. Interfaces* 2014, 6, 10722–10728.

17) Simanta Kundu, **Suparna Sadhu**, Rajesh Bera, Bipattaran Paramanik and Amitava Patra “Fluorescence Dynamics and Stochastic Model for Electronic Interaction of Graphene Oxide and CdTe QD in Graphene Oxide-CdTe QD Composite” *J. Phys. Chem C* 2013, 117, 23987–23995 (appeared in the front cover page).

16) **Suparna Sadhu** and Amitava Patra “Recent Advances in Carrier Relaxation Dynamics and Energy Transfer of Semiconductor Quantum Dots: Size, Shape and Composition” *ChemPhysChem*. 2013, 14, 2641-2653 (Invited Mini Review).

15) Sadananda Mandal, Motiar Rahaman, **Suparna Sadhu**, Sandip K. Nayak and Amitava Patra “Fluorescence Switching of Quantum Dot in Quantum Dot-Porphyrin-Cucurbit [7] Assemblies” *J. Phys. Chem C* 2013, 117, 3069–3077.

14) **Suparna Sadhu** and Amitava Patra “Lattice strain controls the carrier relaxation dynamics in $\text{Cd}_x\text{Zn}_{1-x}\text{S}$ alloy QD” *J. Phys. Chem. C* 2012, 116, 15167–15173.

13) **Suparna Sadhu** and Amitava Patra “Relaxation dynamics of anisotropic shaped CdS nanoparticles” *J. Phys. Chem. C* 2011 115, 16867–16872.

(Publication from Ph.D work)

12) **Suparna Sadhu**, Krishna Kanta Halder and Amitava Patra “Size Dependent Resonance Energy Transfer between Semiconductor Quantum Dots and Dye Using FRET and Kinetic Model” *J. Phys. Chem. C* 2010, 114, 3891-3897.

11) **Suparna Sadhu**, Masanori Tachiya and Amitava Patra “A stochastic model for energy transfer from CdS quantum dots/rods (donors) to nile red dye (acceptors)” *J. Phys. Chem. C*, 2009, 113, 19488-19492.

10) **Suparna Sadhu** and Amitava Patra “Composition effects on quantum dot-based resonance energy transfer” *Appl. Phys. Lett.* 2008, 93 183104-1-3. (*Selected for Virtual Journal of Ultrafast Science, Dec.2008*).

9) **Suparna Sadhu** and Amitava Patra “Donor-acceptor systems: Energy transfer from CdS quantum dots/rods to nile red dye” *Chem. Phys. Chem.* 2008, 9, 2052-2058.

8) **Suparna Sadhu**, Paramita Saha Chowdhury and Amitava Patra “Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals” *J. Luminescence*, 2008, 128, 1235.

7) **Suparna Sadhu**, Tapasi Sen and Amitava Patra “Phase and shape controlled synthesis of CdS nanocrystals and their characterization” *J. Nanosci. & Nanotech*, 2008, 8, 1238.

6) Pushpal Ghosh, **Suparna Sadhu**, Tapasi Sen and Amitava Patra “Upconversion emission of BaTiO_3 : Er nanocrystals” *Bull. Mater. Sci. (special issue)* 2008, 31, 461.

5) **Suparna Sadhu** and Amitava Patra “Synthesis and spectroscopic study of high quality alloy $\text{Cd}_x\text{Zn}_{1-x}\text{S}$ nanocrystals” *J. Chem. Sci. (special issue)* 2008, 120, 557-564.

4) Tapasi Sen, **Suparna Sadhu** and Amitava Patra “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler” *Appl. Phys. Lett.* 2007, 91, 043104-1.

- 3) **Suparna Sadhu**, Tapasi Sen and Amitava Patra “Shape Controlled Synthesis and Luminescence Properties of ZnO: Eu³⁺ Nanostructures” *Chem. Phys. Lett.* 2007, 440, 121.
- 2) **Suparna Sadhu**, Paramita Saha Chowdhury and Amitava Patra “Understanding the role of particle size on photophysical properties of CdS: Eu³⁺ nanocrystals” *J. Luminescence* 2007, 126, 387.
- 1) Pushpal Ghosh, **Suparna Sadhu** and Amitava Patra “Preparation and photoluminescence properties of Y₂SiO₅: Eu³⁺ nanocrystals” *Phys. Chem. Chem. Phys.*, 2006, 8, 3342.